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Abstract. Within the framework of tight-binding theory we have found a class of superlattices
that possess a narrow band of electronic states localized at interfaces. We suggest that, if the
electron—phonon interaction is small enough, it could preserve the existence of the narrow
band and lead to a superconducting state formed by Cooper pairs of heavy electrons localized
at interfaces.

1. Introduction

Electronic states seated at interfaces of a superlattice may have a band structure quite
different from that of the bulk; for example, there may exist conductivity or even
superconductivity related to interfaces. In this respect it is worth while to note that, as
far as their crystalline structure is concerned, high-T, oxide superconductors are layered
materials, which may be viewed as a sort of superlattice, cooked in the natural process
of preparing ceramics.

The fascinating idea that has been developing for some time is to grow high-T,
superconductors (perhaps of a nature different from that discovered by Bednorz and
Miiller (1986)) by employing the technique worked out for the manufacture of super-
lattices. In fact, Triscone et al (1989) prepared superlaitices of the high-T, super-
conductors YBa,Cu;O5; and DyBa,Cu;0; with transition temperature T, above 85 K
using the method of epitaxial growth. Considering the similarity between the crystalline
structures of superlattices and high-7, superconductors, in which the Cu—O planes form
a kind of superlattice, we may expect that investigation of the properties of electronic
states in superlattices in the normal state may have a bearing on the understanding of
superconductivity (not necessarily of the cuprate type).

An important characteristic of the structure of electronic states is the bandwidth; in
this paper we are going to show that in some simple cases very narrow bands of electronic
states (i.e. very heavy electronic carriers) may localize at interfaces of superlattices, and
result in a superconducting state due to the formation of Cooper pairs of heavy electrons.

Using the concept of narrow bands makes for understanding the phenomenon of
high-T, superconductivity. In this respect, it should be noted that the results of electrical
transport measurements of YBaCuO and LaSrCuO oxides are difficult to explain if we
confine ourselves to the picture of wide bands produced for these materials by cal-
culations within the local-density approximation (LDA). In contrast, the concept of
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narrow bands has turned out to be fruitful. Moshchalkov er af (1987) and Maoschalkov
(1988} came to the conclusion that high-T, superconductors doped with strontium or
oxygen should possess a narrow impurity band in the gap close to the valence band edge.
Genossar et al (1989) suggested that the transport properties of these materials can be
explained by the transport in a narrow band split off completely from the adjoining
bands.

There are diverse opinions about the causes of narrow conduction bands in high-T,
materials. Matsumoto er al (1989} showed that the narrow band (of essentially two-
dimensional origin due o the Cu-Q planes) at the Fermi level of the oxide super-
conductors may be due to the mixing of the pand d electrons, allowing for a strong intra-
atomic repujsion between d electrons. In contrast, Alexandrov ef af (1986) showed that
the narrow band of elecironic states may appear due to some instabilities caused by
strong ¢lectron—phonon interaction.

In this paper we study a novel mechanism for the formation of the narrow band of
electronic states peculiar t0 the superiattice structure. We {eel that it may have a bearing
on superconducting materials, even though of a type different from those discovered by
Bednorz and Miiller (1986).

We consider a superlattice in which monatomic interfaces formed by a conductor
separate slices of a large number of layers of a dielectric. Considering electronic states
within the framework of the tight-binding model. we assume that the electronic atomic
sites of interfaces and dielectric layers together form a stmple cubic lattice and the
amplitudes of electron transfer from a site in the dielectric to an adjacent site in either
the dielectric or interface layers are equal to

Y = Yaiedist = Ydickintert - (1)
Within interfaces the transfer amplitudes are generally different from that in the bulk.

Yo = Yoond—cond & V-

We consider only electronic transfers to nearest neighbours, and neglect intra-atomic
repulsion between electrons. For the sake of simplicity. and taking into account that the
model under consideration mav be only 2 very crude picture of what happensin real life.
we shall assume that the electrons are in the s state, neglect spin and suppose that y > 0.

We shall show that a band generated by electronic states localized at interfaces of a
superlattice may turn out to be narrow at the centre (or at the edge) of the Brillouin
zone, if the transfer amplitudes satisfy a certain relation (see equation (11) in section 2).
This narrow band lies above the bulk band, which is related to atomic layers confined
betweeninterfaces. [f asufficient number of electronsis provided, the Fermi level passes
through the upper, narrow band generated by electronic states at interfaces, so that the

interfaces form a 20 conductor. and the atomic layers between them (the bulk layers) a
diglectric.

1. Electronic states localized at interfaces

To give a quantitative form to the picture of a superlattice we wish to study. let us write
down its Hamiltonian, which comprises three terms.
H=H,+Hh+Hih

corresponding to interfaces (i), dielectric or bulk layers (b) and interaction terms
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between them (ib), respectively. To simpiify the notation let us choose such a spatial
scale that the spacing of a lattice is equal to 1, so that the lattice sites are given by integer
vectors

J=U1j2.f3) Jtofzrj3=0, 21,22,
In what follows we shall use the notations
1=(1,0,0) 2=(0,1.0) 3=(0,0,1).

We shall assume that interfaces correspond to integer planes given by the equations
j3 = kN k=0,=1,%2,...

with the number of layers between two adjacent interfaces equal to N — 1. Then the
term H; corresponding to interfaces reads

H = 2 2 (a'Uc ¢ y(,Z( ,-cj-%-nc))

jrjz= - k=

with j3 = kN. The term Hj, reads
+ % +x N=2

H= 2 2 E(ac G Vé(CfHCﬁHC))

jrjz==k==% r=1

withf, = kN + r. The term Hib, the interaction between interfaces and bulk layers, reads
+x

Hy=—y 2 > [(c} + cf)e; + HC)

jljr==m k==

withj; = kN, ji = &N+ landji = kN - L

The Hamiltonian given above determines the dynamics of the one-particle problem.
Since it contains only second-order terms, we can eliminate electronic operators related
tositesinside the bulk {for example, with the help of functional integration, by employing
the path integral for the description of Fermi fields (see appendix)) and obtain the
equation for the spectrum of excitations localized at interfaces. The latter reads

E — &4(q) — 2¥*A(E, q) — 2y*(cos Q)B(E, q) =0 (2)

whete ¢ = (g, ¢3) is 2 2D momentum in the plane of interfaces and { is a momentum of
excitations travelling over interfaces due to their interaction through bulk layers. The
functions A(E, q) and B(E, g) are given by the equations

N-1

2
AE. @) =5 El

2 sm(:rr/N) sinfxr(N — 1)/N]
N D — &(g) + 2y cos(tr/N)

sin?(7r/N)
E — &(g) + 2y cos(zr/N)

BE,¢) ==

with £4(gq) and £(g) being the energies of excitations of momentum paraliel to planes of
interfaces

2 2
£0(g) = g — 2y, 2 cOS g e(g) = @ — 2y 2, cos g; —n=q,.q; <+

=] i=1
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The RrHs of the equation for B(E, q) is an oscillating sum reiated to the interaction
of interfaces through the bulk layers of the dielectric. Generally, we have no tools for
studying it. But in the important situation when the number of layers between two
adjacent interfaces is large, N » 1, there is the estimate

B(E.q)~1/N
due to its oscillating nature. Consequently, for large V, i.e. thick slices of the diclectric
between two adjacent interfaces, we may neglect the function B(E, ¢) altogether, at
least in a first approximation. Equally important, for large N we may change summation
in the RHs of the equation for A(E, ¢) for integration, and cast the function A(E, ¢) in
the integral form,

+x in2
ALE. 9 = Zl:r—rJ’__,r de— e(;)n+;y cosx’ 3)
It is easy to convince oneself that the following equations follow from equation (3):
WAL, ) = {E —&(q) — {[E - e(@)]’ — 47} E>e(g) +2y @
E— &(q) +{[E - &()]’ — 47} E<e&(g) -2y

The first condition, E > £(g) + 2y, means that the energy of an excitation is above the
bulk band (the band of excitations in the dielectric); the second, below the bulk band.
The analytical continuation for the RHS in equation (4) gives the equation

2y*A(E,q) = E - ¢(g) — {[E — ()] — 4y} (5
for resonant states, i.e. lying inside the bulk band

elg) — 2y < E<s&{q) + 2v.
Using equations (4) and (5) and neglecting the function B(E, g) we may cast equation
(2) in the form

&(g) — £o(g) = {[£ = =(@)’ — 4y*}'7 (6)
with & = —1. +1, i for excitations with energy above, below, inside the bulk band of
dielectric layers.

For the upper band, x = —1, the solution to equation (6) reads

E=e(g) + {[e(g) — eo(g)]® + 4y7}2. (7)
Since the sign at the radical in equation (6) is minus, we infer that the upper band is
present for those values of momenta g for which we have

£(q) < £0(a). (8)

Let us consider constraint (8) to be true, and study equation (7) for small momenta,
i.e. at the centre of the Brillouin zone. By expanding the RHS of (7) to first order in g* =
gi + g5 we get

E=¢(g=0)+ (A7 + 9yH)" + g /2M (9)
where
A =2(g=0) — £(g =0) 1/2M = y[1 + (1 — yo/y)A(AT + 47777,
From the equation given above we infer that the effective mass M tends to infinity as
(1= yo/IA(A? + 4y?) "2 = —1. (10)

Erom (8) we infer A < 0 and since y > 0 we infer y, < v. In fact, it is not hard to see that
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the stronger inequality y, < O is to be satisfied. Equation (10) may be cast in the more
explicit form

ay =a+4(yy — v) + 272 (y — vo)* — ¥R (11)
Thus, we have come to the conclusion that electronic states localized at interfaces
possess a very large effective massif the parameters of tight-binding theory (@, ay, ¥, vo)
are subject to constraint (11), in conjunction with ¥ > 0 and y, < 0. The latter is unusual
in tight-binding theory; the transfer integrals a-and y related to the matrix elements of
the potential at a site and between adjacent sites are generally considered to be positive.
In this respect, we would like to note that, in contrast to y,, the constant ¢« determined
by equation (11} turns out to be positive for small negative y,, owing to the last term in
equation (11); for example a; = @ for y,/y = —0.1. The same analysis can be carried
out for momenta g, g, = =, i.e. at the edge of the Brillouin zone.
The analysis of equation (6), similar to that given above, indicates that the lower
band of states with energies below the bulk band is given by the equation

E = ¢(q) ~ {[e(g) — o)) + 4y}~

in conjunction with the requirement £(g) > £.(g), owing to the plus sign at the square
root in equation (6). We see that, for a fixed momentum g, states in the upper and lower
bands generally cannot coexist simultaneously. The same is true concerning the resonant
states.

It is worth noting that the influence of the interaction between interfaces accom-
modated through the function B{E, ¢) is of order 1/N, as was iudicated eatlier, so that
it would give terms of order 1/N for a correction tc soiutions of the dispersive equations
discussed above, and a spiitting, also of order 1/N, of energy bands. For instance, it
would result in splitting the narrow band we have discussed above into a number of
minibands, also narrow.

Concluding this section we wish to note that Dobrzynski and Mills (1973) found a
splitting of electronic bands, above and below the bulk one, of electronic states localized
at a (2 x 1) reconstructed (001) surface of a simple cubic lattice. They assume the
transfer amplitudes be subject to a constraint that in our terms reads y ~ yg. They
do not consider narrow bands. Djafari-Rouhani e af (1985) studied electronic states
localized at the surface of a superlattice consisting of thin alternating layers of two
deposited compounds. We feel that their method can be used also for studying electronic
states at interfaces of superlattices.

3. Conclusions

We have found that a narrow band of electronic states (large effective mass) may occur
due to the topological structure of a body, i.e. the breaking of its crystalline symmetry
by planes of interfaces of a superlattice. It is important that the use of the path integral
involves no approximation (e.g. second-order expansion), gives the exact solution to
the problem and brings about the main equation (2) describing the bands localized at
interfaces without employing perturbation theory as regards the influence of the bulk
band on the interface bands. For alarge number, N, of bulk layers between two adjacent
interfaces, and the analysis of equations (2)~(5) based on this assumption, the reciprocal
effect of the interface bands on the bulk one is small (in contrast to the influence of the
bulk on the interfaces, which increases with V). This statement can be proved along the
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same lines as Ledermann’s theorem, asis well known in the dynamical theory of lattices
(see Maradudin et af 1963).

In this paper we have considered a one-particle problem: the electron-phonon
interaction can also be allowed for, if it is small enough to be neglected in the first
approximation. so that we may obtain the effect of the narrow band for suitable transfer
amplitudes. Consequently, we have to require that the width W of the narrow band be
larger than the correction given by the effective electron~phonon interaction V,

VW (12)

Here it should be noted that the formation of heavy electrons within the framework of
the model considered in this paper is different from the mechanism due to the strong
electron—-phonon interaction that results in the so-called small polarons due to lattice
instabilities (see Alexandrov et af 1986, Zheng Hang 1989). Nonetheless, the supercon-
ducting state should take place in a situation similar to that of the small polarons,
i.e. heavy electron carriers (the narrow band) and a weak effective electron—-phonon
interaction, subject to constraint (12}.

As far as applications to existing materials are concerned, it should be noted that the
LD calculations of the band structure for high-T, oxides (see Pickett 1989} do not show
a narrow band similar to that obtained in the present paper. The reason for this may be
twofold. Firstly, our model is perhaps too simplistic to be directly applied to high-T,
oxides; for example. we require that the number of bulk layers between two adjacent
interfaces be large, whereas it is small for the oxides (to say nothing of our model's
negiect of the effects of exchange and correlation, as the LDA also does). Secondly, the
constraints on transfer amplitudes required by the narrow band may be incompatible
with values of matcrial constants used in the LDA calculations for the high-T, oxides.
Perhaps. our results should have a bearing on other materials.

In thisrespect it seems to be an interesting proposition that the superconductivity due
to localized states studied in this paper could be similar to the quasi-2D superconductivity
suggested for the first time by Ginzburg and Kirznitz (1964, 1967). In fact, if the number
of atomic layers between two adjacent interfaces is large, the superlattices considered
in this paper are sandwiches in the sense of Ginzburg and Kirznitz (1967), i.e. they
accommodate the partitioning of the dielectricregion and the conductor region. Accord-
ing to Ginzburg (1968, 1970} a superconducting state may settle on the conduction
monolayer owing to an exchange by excitons, which propagate in the dielectric bulk
region, between electrons at interfaces.

Appendix

We shall consider the path integral formulation of our problem at zero temperature. We
need to write down the generating functional for the problem (see Popov 1976)

Z[E) = j Dc* Dcexp [é Jix dr (L + %(Cf’g} + fgfcj))]

with the Lagrangian

= —H+} 2 (cf -ihd,q— ikd,c} - ).
i

Here c;' . ¢; are Grassmann variables for fermionic fields, &7 , & are external sources, at
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site j = (j, ja, /3). The Green function for the system is derived from the generating
functional (see Popov 1976). We need to find a transformation that splits up the interface
and the bulk variables, and for that end we consider the transiation

et tnf gogEn

with n,, n; being Grassmann functions at lattice sites; we assume that they are zero at
interfaces. It should be noted that n; and 7; are Hermitian conjugate. Substituting
them into the Lagrangian and requiring that terms linear in ¢;

J.=(j|,j‘2,j3=kN+1) j':(jl,fg,kN—l)

and their Hermitian conjugates be equal to zero, we obtain the equation for the fields
mj
3
ihd,n, —an; — vy > (Mjwi + M) = ¥O11€ yys=tn T YOLN=1C)jnis=kN+ N
i=1

and similar equations for their Hermitian conjugates 1. The Lagrangian itself takes
the form

L=Lg+ Lt

with L§', L§" depending only on variables of butk layers and interfaces, respectively.
Thus we get the effective action for the system of interfaces

4o o 2
L= 2 X (%(cf CihA,¢; — iHD,C - ¢) — aycl G — Yo 2 (6fuiG + €F ¢}l
i=1

fjze—wk=r=
+ . N .
— 8 st i nifie v HC‘)) .

To get an explicit form for L{" we may employ the Green function of the equation of
motion for the fields #}, #; given above, with zero boundary conditions at interfaces.
The Fourier transform of this function reads

w-1

2 +T
o= gy k = - :
G(E, ji =V jr = kN + 1IN + 1) N L dg, dg, E‘;

 &XP[=iZ 1 gxlx = 4] sin(kt/N) sinCrkly /N)
E+a+2yE cosg, +isgnE-0
Liy=1.2,....N-1.

Thus we obtain the explicit form of the effective Lagrangian for surface fermionic fields
(it is worth while to note that it is not iocal in time), which provides the equations of
motion for the fields ¢;, ¢;, and after some computations we obtain the dispersive
equation (2},
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