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Abstracl. Within the frameworkof tight-bindingtheoryu,ehave found a classofsuperlattices 
that possessanarrow band ofelectronicstateslocalizedat interfaces. We suggest that. ifthe 
electron-phonon interaction is small enough, it could preserve the existence of the narrow 
band and lead to a superconductingstate formed by Cooper pairsofheavy electronslocalized 
at interfaces. 

1. Introduction 

Electronic states seated at interfaces of a superlattice may have a band structure quite 
different from that of the bulk; for example, there may exist conductivity or even 
superconductivity related to interfaces. In this respect it is worth while to note that, as 
far as their crystalline structure is concerned, high-T< oxide superconductors are layered 
materials, which may be viewed as a sort of superlattice. cooked in the natural process 
of preparing ceramics. 

The fascinating idea that has been developing for some time is to grow high-T, 
superconductors (perhaps of a nature different from that discovered by Bednorz and 
Muller (1986)) by employing the technique worked out for the manufacture of super- 
lattices. In fact, Triscone et al (1989) prepared superlattices of the high-T, super- 
conductors YBa,Cu,O, and DyBa,Cu,O, with transition temperature T,, above 85 K 
using the method of epitaxial growth. Considering the similarity between the crystalline 
structures of superlattices and high-T, superconductors, in which the Cu-0 planes form 
a kind of superlattice, we may expect that investigation of the properties of electronic 
states in superlattices in the normal state may have a bearing on the understanding of 
superconductivity (not necessarily of the cuprate type). 

An important characteristic of the structure of electronic states is the bandwidth; in 
thispaper wearegoingtoshow that insome simplecasesverynarrowbdndsofelectronic 
states (i.e. very heavy electronic carriers) may localize at interfaces of superlattices, and 
result in a superconductingstate due to the formation ofCooperpairsofheavy electrons. 

Using the concept of narrow bands makes for understanding the phenomenon of 
high-T, superconductivity. In this respect, it should be noted that the results of electrical 
transport measurements of YBaCuO and LaSrCuO oxides are difficult to explain if we 
confine ourselves to the picture of wide bands produced for these materials by cal- 
culations within the local-density approximation (LDA). In contrast, the concept of 
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narrow bands has turned out to be fruitful. Moshchalkov eta/ (1987) and Moschalkov 
(1988) came to the conclusion that high-T, superconductors doped with strontium or 
oxygen should possess a narrow impurity band in the gap close to the valence hand edge. 
Genossar et al(1989) suggested that the transport properties of these materials can be 
explained by the transport in a narrow band split off completely from the adjoining 
bands. 

There are diverse opinions about the causes of narrow conduction bands in high-T, 
materials. Matsumoto er a[ (1989) showed that the narrow band (of essentially two- 
dimensional origin due to the Cu-0 planes) at the Fermi level of the oxide super- 
conductors may be due to the mixingof the p and d electrons, allowing for a strong intra- 
atomic repulsion between d electrons. In contrast, Alexandrov et a/ (1986) showed that 
the narrow band of electronic states may appear due to some instabilities caused by 
strong electron-phonon interaction. 

I n  this paper we study a novel mechanism for the formation of the narrow band of 
electronicstates peculiarto the superlattice structure. We feel that i t  may have a bearing 
on superconduclingmaterials. even though of a type different from those discovered by 
Bednorz and Muller (1986). 

We consider a superlattice in which monatomic interfaces formed by a conductor 
separate slices of a large number of layers of a dielectric. Considering electronic states 
within the framework of the tight-binding model. we assume that the electronic atomic 
sites of interfaces and dielectric layers together form a simple cubic lattice and the 
amplitudes of electron transfer from a site in the dielectric to an adjacent site in  either 
the dielectric or interface layers are equal to 

Y YdiCl4ifl Ydcl-inirrl. (1) 

YII = Yco"d<<>nd + Y .  

Within interfaces the transfer amphtudes are generally different from that in the bulk. 

We consider only electronic transfers to nearest neighbours, and neglect intra-atomic 
repulsion between electrons. For the sake of simplicity, and taking into account that the 
model under consideration may beonly averycrudepictureofwhat happens in real life. 
we shall assume that the electrons are in the s state. neglect spin and suppose that y 7 0. 

We shall show that a band generated by electronic states localized at interfaces o fa  
superlattice may turn out to be narrow at the centre (or at the edge) of the Brillouin 
zone. if the transfer amplitudessalisfy acertain relation (see equation (11) in section2). 
This narrow band lies above the bulk band. which is related to atomic layers confined 
hetweeninterfaces. Ifasufficient number ofelectrons is provided. the Fermi level passes 
through the upper, narrow band generated by electronic states at interfaces, so that the 
interfaces form a ?D conductor. and the atomic layers between them (the bulk layers) a 
diclectric. 

2. Electronic states localized at interfaces 

To give a quantitative form to the picture of a superlattice we wish to study, let us write 
down its Hamiltonian, which comprises three terms. 

H = H, + Hh + H,,, 

corresponding to interfaces (i). dielectric or bulk layers (b) and interaction terms 
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between them (ib), respectively. To simplify the notation let us choose such a spatial 
scale that the spacing of a lattice is equal to 1, so that the lattice sites are given by integer 
vectors 

j =  0 ’ 1 . j ~ ~ j d  j l , j 2 , j 3 = 0 , i l . i 2  , . . . .  

In what follows we shall use the notations 

1 = (1,O. 0) 2 = ( 0 , 1 , 0 )  3 = (0, 0, 1). 

j 3  = k N  k = O ,  il, ?2,.  . . 
We shall assume that interfaces correspond to integer planes given by the equations 

with the number of layers between two adjacent interfaces equal to N - I. Then the 
term Hi corresponding to interfaces reads 

H ,  = 2 
I ~ , ] ~ = - X  k = - x  i = 1  

with j3 = kN. The term H h  reads 
i x  +r N - 2  , 3 

withj, = kN + r. The termH,, theinteraction betweeninterfacesandbulklayers. reads 
+ x  t =  

H i h =  - y  2 [(Cf + C,’.)Cj + HC] 
j , , j 2 = - =  1 = - 3  

withj, = kN, j ;  = kN + 1 and j ;  = kN - 1. 
The Hamiltonian given above determines the dynamics of the one-particle problem. 

Since it contains onlysecond-order terms. wecan eliminateelectronicoperators related 
tositesinside the bulk (for example, with thehelpoffunctional integration, by employing 
the path integral for the description of Fermi fields (see appendix)) and obtain the 
equation for the spectrum of excitations localized at interfaces. The latter reads 

E - E o ( q )  - 2y2A(E, 4) - 2Y’(COs Q)B(E ,  q)  = 0 (2) 

where q = (ql, q2) is a ZD momentum in the plane of interfaces and Q is a momentum of 
excitations travelling over interfaces due to their interaction through bulk layers. The 
functionsA(E, q) and B(E.  q )  are given by the equations 

with E a ( q )  and E ( q )  being the energies of excitations of momentum parallel to planes of 
interfaces 

E o ( q )  = (Yo - 2yo COSqi E ( q )  = Ly - 27 COSq; - n S q l . q ,  S +n. 
2 2 

,=I i= I 
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The RHS of the equation for B ( E ,  q)  is an oscillating sum related to the interaction 
of interfaces through the bulk layers of the dielectric. Generally, we have no tools for 
studying it. But in the important situation when the number of layers between two 
adjacent interfaces is large, N 9 1, there is the estimate 

B ( E ,  q) - 1/N 
due to its oscillating nature. Consequently, for large iV, i.e. thick slices of the dielectric 
between two adjacent interfaces. we may neglect the function B(E.  q) altogether, at 
least ina first approximation. Equally important,for IargeNwe may change summation 
in the RHS of the equation for A ( E ,  q )  for integration, and cast the function A ( E ,  q )  in 
the integral form, 

It is easy to convince oneself that the following equations follow from equation (3 ) :  

E - E ( q )  - { [ E  - &(q)]* - 4 y ’ p  

E - E(Q) + { [ E  - E(Q)]2  - 4y’”” 
E >  4 7 )  + 27 
E < E ( q )  - ?y. 2y’A(E. q) = [ (4) 

The first condition, E > &(q) + 2y, means that the energy of an excitation is above the 
bulk band (the band of excitations in the dielectric); the second, below the bulk band. 
The analytical continuation for the RHS in  equation (4) gives the equation 

2 y 2 A ( E ,  q) = E - &(q) - i{[E - ~ ( q ) ] ’  - 4y2)“2 

€(q)  - 2y  < E < E ( q )  + 2y .  

( 5 )  
for resonant states, i.e. lying inside the bulk band 

Using equations (4) and ( 5 )  and neglecting the function B(E,  q) we may cast equation 
( 2 )  in the form 

with K = -1, +1, i for excitations with energy above, below, inside the bulk band of 
dielectric layers. 

E ( q )  - E ” ( q )  = K { [ E  - E ( q ) I 2  - 4y’}’li’ (6) 

For the upper band, K = -1, the solution to equation (6)  reads 

E = &(q) + { [ E ( q )  - E o ( q ) ] ?  + 4y’)”.  

E(4) < E o ( 9 ) .  (8) 

(7) 
Since the sign at the radical in equation (6) is minus, we infer that the upper band is 
present for those values of momenta q for which we have 

Let us consider constraint (8) to be true, and study equation (7) for small momenta, 
i.e. at the centre of the Brillouin zone. By expanding the RHS of (7)  to first order in q’ = 
q; + 41 we get 

where 
E = E ( q  = 0) + (A’ + 4y’)’” + q 2 / 2 M  (9) 

A = E ( q  = 0) - E ” ( q  = 0) I/ZM = y[i + (1 - y o / y ) ~ ( ~ 2  + 4y?)-l’2].  

From the equation given above we infer that the effective mass M tends to infinity as 

From (8) we infer A < 0 and since y > 0 we infer yo < y. In fact, it is not hard to see that 
(I  - Y&)A(A* + 4 y 2 ) - i ! 2  = -1. (10) 
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the stronger inequality yo < 0 is to be satisfied. Equation (10) may be cast in the more 
explicit form 

(Yo = (Y + 4(y,  - y )  + 2y2[(y - yo)*  - y2]- ’ /2. (11) 
Thus, we have come to the conclusion that electronic states localized at interfaces 

possessaverylargeeffectivemassifthe parametersof tight-binding theory(cu, a,,, y ,  yo) 
aresubject toconstraint (ll),inconjunctionwithy > Oandyu< 0.Thelatterisunusual 
in tight-binding theory; the transfer integrals wand y related to the matrix elements of 
the potential at a site and between adjacent sites are generally considered to be positive. 
In this respect, we would like to note that, in contrast to yo, the constant CY,, determined 
by equation (11) turns out to be positive for small negative yo, owing to the last term in 
equation (11); for example ( Y ~  = CY for yu /y  = -0.1. The same analysis can be carried 
out for momenta q l .  q2 = ? E ,  i.e. at the edge of the Brillouin zone. 

The analysis of equation (6) .  similar to that given above, indicates that the lower 
band of states with energies below the bulk band is given by the equation 

E =  d q )  - { [ E ( 4 )  - &u(4)I2 + 4Y2}-’” 

in conjunction with the requirement E ( q )  > ea(q). owing to the plus sign at the square 
root in equation (6). We see that. for a fixed momentum q,  states in the upper and lower 
bandsgenerally cannotcoexist simultaneously. Thesameistrueconcerningthe resonant 
states. 

It is worth noting that the influence of the interaction between interfaces accom- 
modated through the function B(E, q)  is of order 1/N, as was iiidicated earlier, so that 
it would give terms of order l/Nfor a correction !s soiutions of the dispersive eqiiations 
discussed above, and a splitting, also of order 1/N, of energy bands. For instance, it 
would result in splitting the narrow band we have discussed above into a number of 
minibands, also narrow. 

Concluding this section we wish to note that Dobrzynski and Mills (1973) found a 
splitting of electronic bands, above and below the bulk one, of electronic states localized 
at a ( 2  x 1) reconstructed (001) surface of a simple cubic lattice. They assume the 
transfer amplitudes be subject to a constraint that in our terms reads y - yo. They 
do not consider narrow bands. Djafari-Rouhani et a i  (1985) studied electronic states 
localized at the surface of a superlattice consisting of thin alternating layers of two 
depositedcompounds. We feel that their methodcan be used alsoforstudyingelectronic 
states at interfaces of superlattices. 

3. Conclusions 

We have found that a narrow band of electronic states (large effective mass) may occur 
due to the topological structure of a body, i.e. the breaking of its crystalline symmetry 
by planes of interfaces of a superlattice. It is important that the use of the path integral 
involves no approximation (e.g. second-order expansion), gives the exact solution to 
the problem and brings about the main equation (2) describing the bands localized at 
interfaces without employing perturbation theory as regards the influence of the bulk 
bandon theinterface bands. Fora large number, N,of bulk layers between two adjacent 
interfaces, and the analysisof equations (2)-(5) based on thisassumption, the reciprocal 
effect of the interface bands on the bulk one is small (in contrast to the influence of the 
bulk on the interfaces, whichincreaseswith N ) .  This statement can be proved along the 
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same lines as Ledermann's theorem. as is well known in the dynamical theory of lattices 
(see hlaradudin et ai 1963). 

In this paper we have considered a one-particle problem: the electron-phonon 
interaction can also be allowed for, if i t  is small enough to be neglected in the first 
approximation. so that we may obtain the effect of the narrow band for suitable transfer 
amplitudes. Consequently, we have to require that the width Wof the narrow band be 
larger than the correction given by the effective electron-phonon interaction V. 

v ==3 Ct'. (12) 
Here it  should be noted that the formation of heavy electrons within the framework of 
the model considered in this paper is different from the mechanism due to the strong 
electron-phonon interaction that results in the so-called small polarons due to lattice 
instabilities (see Alexandrov e ta /  1986. Zheng Hang 1989). Nonetheless, the supercon- 
ducting state should take place in a situation similar to that of the small polarons, 
i.e. heavy electron carriers (the narrow band) and a weak effective electron-phonon 
interaction, subject to constraint (12). 

As far as applications to existing materials are concerned, it  should be noted that the 
LDA calculations of the band structure for high-T, oxides (see Pickett 1989) do not show 
a narrow band similar to that obtained in the present paper. The reason for this may be 
twofold. Firstly, our model is perhaps too simplistic to be directly applied to high-T, 
oxides; for example. we require that the number of bulk layers between two adjacent 
interfaces be large, whereas it is small for the oxides (to say nothing of our model's 
neglect of the effects of exchange and correlation, as the LDA also does). Secondly, the 
constraints on transfer amplitudes required by the narrow band may be incompatible 
with values of material constants used in the LDA calculations for the high-T, oxides. 
Perhaps, our results should have a bearing on other materials. 

In this respect it  seems to be an interesting proposition that the superconductivity due 
to localizedstatesstudied in thispapercould besimilar to the qUaSi-zDsuperconductivity 
suggested for the first time by Ginzburgand Kirznitz (1964,1967). In fact, if the number 
of atomic layers between two adjacent interfaces is large, the superlattices considered 
in this paper are sandwiches in the sense of Ginzburg and Kirznitz (1967). i.e. they 
accommodate [he partitioningofthe dielectric regionand theconductor region. Accord- 
ing to Ginzburg (1968, 1970) a superconducting state may settle on the conduction 
monolayer owing to an exchange by excitons, which propagatc in the dielectric bulk 
region, between electrons at interfaces. 

Appendix 

Weshallconsider the path integral formutation of our problem at zero temperature. We 
need to write down the generating functional for the problem (see Popov 1976) 

with the Lagrangian 

L = -H + 4 E (c; I iha,c, - ifia,c,? . cj) .  
j 

Here c,? , c, are Grassmann variables for fermionic fields, E,!, E, are external sources, at 
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site j = (jl, j2, j 3 ) ,  The Green function for the system is derived from the generating 
functional (see Popov 1976). We need tofinda transformation that splitsup theinterface 
and the bulk variables, and for that end we consider the translation 

C f  J + c: + 11: c;-' ci + 7; 
with q,, 7; being Grassmann functions at lattice sites; we assume that they are zero at 
interfaces. It should be noted that 7; and 7; are Hermitian conjugate. Substituting 
them into the Lagrangian and requiring that terms linear in c; 

j =  (jl,j2,j: = kN + 1) j = ( j l , j 2 , k N -  1) 

and their Hermitian conjugates be equal to zero, we obtain the equation for the fields 
'b 

ifia,rl, - "7; - Y X ( ~ ; + i +  7;) = Y~~. lc ,uu3=ku + Y ~ ~ . N - I C , ~ ~ ~ , = X N + N  

and similar equations for their Hermitian conjugates q;. The Lagrangian itself takes 
the form 

3 

i =  I 

L = L'B" + LS" 

with L:', Lit' depending only on variables of bulk layers and interfaces, respectively. 
Thus we get the effective action for the system of interfaces 

+r - x  I 

Lbft = ($ (c;  . ifia,cj - iiiJ,c; . c;) - wUc;c; - y o  (C]+~C, + C:C;+~) 
i l . i Z = - z  k = - ; r  i = l  

- ~y(c:~;+j + c ~ + , v i ~ ; + w - ~ j i  + HC)) 

To get an explicit form for Lift we may employ the Green function of the equation of 
motion for the fields q,', 7; given above. a,ith zero boundary conditions at interfaces. 
The Fourier transform of this function reads 

exp[-iZi= qK(jK - j;)] sin(nkl/N) sin(nk/, / N )  
E + c u + Z y ~ : : = , c o s q , + i s e n E , O  

X 

1. l"  = 1,2, .  . .. N - 1. 

Thus we obtain the explicit form of the effective Lagrangian for surface fermionic fields 
(it is worth while to note that it is not local in time), which provides the equations of 
motion for the  fields c;, c,, and after some computations we obtain the dispersive 
equation ( 2 ) .  

References 

Alexandrov A S, Ranninger J and Robszkiewicz B 1986 P h p  Reo. Lei!. 56 949 
Bednorz J G and Muller K A 1986 2. Phys. B 64 189 
Djafaari-Rouhani B, Dobrzynski Land MdSri P 1985 Phys. Rei,. B 31 7739 



436 V L Golo 

Dobrzynski Land Mills D L 1973 Pkys. Reu. B 7 1322 
Genossar J .  Fishcr B and Ashkenazi J 1989 Physic0 C 162164 1015 
GinzburfVL 1968 Usp. Fiz. Nauk9591 
- 1970 Usp. Fiz. Nauk 101 185 
Ginzburg V L and Kinnitz D A 1964 Zh. Exp. 'Teor. Fiz. 46 391 
- I967 Soii. Acad. Dokl. 176 553 
Maradudin A A .  Montroll E W and Weiss G H 1963 Theow of Latiice Dynamics in ihe Harmonic Approxi. 

mniion (New York: Academic) ch III 
Matsumoto V V. Sdsaki M and Tachiki M 1989SolidStale Commun. 71 829 
Moshchalkov V V 1988 PhyJica C 156 473 
Moshchalkov V V. Muttik I G.  Samarin N A. Grahov I E, Kaul A Rand Tretyakov Yu D 1987 Proc, ConL 

Pickctt W E 1989 Reo. Mod. Phyx. 61 433 
Popov V N 1976 F~icnciional Iniegrals in Quanium field The0r.v and Slalistical Physics (Moscow: Atomizdat) 

Triscone J M, Karkut M (3. Antognazza L, Brunnrr 0 and Fisher 0 1989 Phys. Reo. L e u  63 1016 
Zhenf Heng 1989J. Phys,: Condens. Morrrr 1 IMI 

on High-T, Srrperconductiuity ISuerdlousk) in Russian 

ch 11 


